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Introduction
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Consider:
@ A Riemannian manifold Y.
@ A closed one-form a.

Get supersymmetric quantum mechanics with target Y deformed by a potential
specified by a.

4d N = 4 supersymmetric Yang—Mills theory compactified on a 3-manifold M in the
Vafa—Witten or Kapustin—Witten twists gives supersymmetric quantum mechanics
with target

Y = Conng (M),

where G is the complexified gauge group and « the differential of the complex

Chern—Simons functional Scs: Conng(M) — C/Z.

Goals of the talk:

o What are different ways to describe spaces of states H for supersymmetric
quantum mechanics?

o Can one make sense of this in the main example?
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Twisted cohomology
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Y manifold, o € H!(Y; C).
Witten: directly analyzing SUSY quantum mechanics, we get

H=(@*(Y),d+an(-)),
the twisted de Rham complex. de Rham theorem: this is identified with
H =H*(Y;Cq),
where « defines a twisted one-dimensional local system.
Question: how does it depend on a?

Theorem (Novikov)

Let Y be a finite CW complex and a € HY(Y; Z) (i.e. a = df for f: Y — S'). Then
away from finitely many = € C/2miZ the cohomology groups H®(Y;Cr) are
independent of T.

Later works by Farber, Pajitnov, Sikorav, ...refining this statement.

We will be interested in the generic cohomology H*(Y; Cr,.,a)-

Pavel Safronov Holomorphic Morse theory and character stacks



Morse—Novikov cohomology

Y closed Riemannian manifold, f: Y — S1 a Morse function which can be lifted to a
Morse function F: Y — R on the cover. Novikov complex:

@ M,: C-module generated by critical points of F. Deck transformations make it a
C[t, t—1]-module.

© No = Me Ocye, -1 C((t).
o d: Ny — Ni_; the differential counting gradient flowlines.

Theorem (Novikov)

There is an isomorphism

H*(Ne) = H*(Y; Cryppa) ®c C((2))-
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Vanishing cycles

Y complex manifold and f: Y — C (not necessarily Morse), 0 is the only critical
value. Vanishing cycles:
o Crit(f) is the critical locus.

@ There is a perverse sheaf ¢¢ of vanishing cycles on Crit(f). If Crit(f) is smooth,
this is (a shift of) the constant sheaf.

v(W)r = (5 (R), hd + df A ().

Theorem (Sabbah—Saito)

There is an isomorphism

H* (Y, Q% (h)r) = H*(Crit(f), ¢r) ®c C(1))-
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Enhanced supersymmetry in quantum mechanics

6/12

Let Y be a K&hler manifold and f: Y — C a holomorphic function. Then we get
N = 4 supersymmetry and so a family of TQFTs (parametrized by /i € C) obtained via
supersymmetric twisting (see the paper with B. Williams):

o For h = 0 (B-model) the space of states is H®(Crit(f), O).

o For h =1 (A-model) get the usual twisted supersymmetric quantum mechanics.

@ The deformation from i = 0 to i = 1 corresponds to the Batalin—Vilkovisky
quantization of the critical locus Crit(f).

Remark

Similar to supersymmetry enhancement of 2d SUSY o-model with a hyperKahler
target. Kapustin has explained its relationship to ordinary deformation quantization.

This gives a way to get good models for twisted spaces of states in many theories with
extended supersymmetry.
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Critical cohomology
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Informal setup:
@ Y is an co-dimensional Kahler manifold.
@ « a closed holomorphic one-form on Y.

@ X the zero locus of a which is “finite-dimensional”.

Example

Y is the moduli space of G-connections (G a complex Lie group) on a closed oriented
3-manifold M and
X = Locg(M) = Hom(w1 (M), G)/G

is the character stack.

Theory of d-critical structures of Joyce:
o X is a d-critical locus.
o Orientation data on X: the choice of square root of K)‘g"r.
@ Given an oriented d-critical locus, there is a perverse sheaf ¢x (modeled on ¢r).

The critical cohomology H® (X, ¢) has a mixed Hodge structure and a monodromy
automorphism.

Remark

It is a categorified version of the theory of virtual fundamental classes on moduli
spaces. The analogous structure to orientation data is an orientation of the
determinant line.
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Orienting character stacks
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M a finite CW complex and G a complex algebraic group. Then Locg (M) has a
natural derived enhancement RLocg(M). A volume form (trivialization of K“") on
RLocg (M) induces an orientation data on Locg (M) (a square root of KV'").

Theorem (Naef-S)

Suppose G is a unimodular algebraic group. Then RLocg(M) has a natural volume
form.

@ The value at some point in RLocg (M) is given by the adjoint Reidemeister
torsion.

@ For M a closed oriented surface, it coincides with the symplectic volume form
(observation of Witten, using Poincaré duality for torsion).

In particular, the critical cohomology

H.(LOCG(M)7 (bLocg(M))
is well-defined. What is it?

Remark

For G = SLy(C) it is closely related to the complexified instanton Floer homology of
Abouzaid—Manolescu.
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Skein modules
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M a closed oriented 3-manifold, G a connected complex semisimple algebraic group.
The skein module Skg(M): the space C((h)) counting graphs (“Wilson lines")
embedded in M with edges labeled by G-representations modulo local relations
coming from quantum groups.

Example

The Kauffman bracket skein module (Przytycki, Turaev) is the C((%))-vector space
Sksr,, (M) spanned by isotopy classes of framed unoriented links in M modulo the

relations
() =-a+a @)

K =200 +a 20X

with g = exp(h).

Conjecture (Proof in progress, with S. Gunningham)

There is an isomorphism

Skg(M) = HY,,(Locg (M), ¢10cc(m)) ®c C(h)).
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Critical cohomology and deformation quantization
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Given a Heegaard splitting M = N; Us N> one can identify
Locg(M) = (L1 N L2)/G,

where Li, Ly C S are (G-equivariant) holomorphic Lagrangians in a holomorphic
symplectic manifold S C G2&.

Proposition (Gunningham—Jordan-S)

There is an isomorphism
Skg(M) =2 My ® 4 Mo,

where A is an (algebraic) deformation quantization of S and My, M are deformation
quantizations of Ly and L,.

Question: what is the relationship between critical cohomology and deformation
quantization?
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Critical cohomology and deformation quantization

Kashiwara, Polesello, Schapira, D'Agnolo:
@ For a holomorphic symplectic manifold S there is a canonical deformation
quantization (algebroid) Ws.
o For a holomorphic Lagrangian L C S equipped with a choice of K2/2 there is a
canonical deformation quantization Wg-module M; .
@ For a pair of holomorphic Lagrangians Lj, L, C S the derived tensor product

My, ®I\-/V5 My,

is a perverse sheaf on L1 N L.

Remark

The corresponding category of holonomic Wg-modules is related to microlocal
perverse sheaves of Waschkies and Cété—Kuo—Nadler—Shende (Riemann—Hilbert
correspondence) and the wrapped Fukaya category (Ganatra—Pardon—Shende).

But: L3 N Ly is a d-critical locus and it has an orientation if L1, L» have a choice of
1/2
K."".

Theorem (Gunningham-S)

There is an isomorphism of perverse sheaves
My, ®\L,\;S My, = é1,n1, ®c C(R)-
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Questions

Conjecture (Proof in progress, with S. Gunningham)

There is an isomorphism
SkG(M) = H?en(LOCG(M)v ¢LocG(M)) ®c C((h))

Open questions:

e What is the meaning of the monodromy automorphism on ¢rcc(m) in terms of
Skg(M)? (Defines an hi-connection, a shadow of the Langlands duality of 4d
N = 4 super Yang-Mills.)

@ What is the meaning of the mixed Hodge structure on ¢pqc.(m) in terms of
Skg(M)? (Evaluation at g a root of unity?)
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